HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Engraftment of human T-cell acute lymphoblastic leukemia in immunodeficient NOD/SCID mice which have been preconditioned by injection of human cord blood.

Abstract
Childhood T-cell acute lymphoblastic leukemia (T-ALL) is one of the most common childhood cancers. Study of leukemia biology, as well as preclinical testing of potential therapeutic regimens directed at T-ALL, has been impeded by the lack of an efficient in vivo model of primary leukemia. We have reported elsewhere some observations that human cord blood conditioned medium enhances leukemia colony formation in vitro and preconditioning of sublethally irradiated nonobese diabetic/ severe combined immunodeficient (NOD/SCID) mice with cord blood mononuclear cells (MNCs) facilitates the subsequent engraftment of primary T-ALL cells in these mice. Here we characterize in greater detail this in vivo xenograft model of human leukemia in NOD/SCID mice. Consistent with the thesis that cord blood facilitates engraftment, the engraftment of human leukemia can be shown to increase with increasing number of cord blood MNCs injected. In addition, we documented the expression of chemokine receptor CXCR4 by primary T-ALL from patients and found that the presence of these receptors did not result in the transmigration of T-ALL cells induced by stromal cell-derived factor-1alpha. Finally, we show that in this xenograft system T-ALL cells recovered from engrafted bone marrow are characterized by upregulated expression of interleukin 2 receptor gamma chain, suggesting that cord blood preconditioning may function in part to increase T-ALL responsiveness to growth factor(s).
AuthorsD P Dialynas, L Shao, G F Billman, J Yu
JournalStem cells (Dayton, Ohio) (Stem Cells) Vol. 19 Issue 5 Pg. 443-52 ( 2001) ISSN: 1066-5099 [Print] England
PMID11553853 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, P.H.S.)
Chemical References
  • CXCL12 protein, human
  • Chemokine CXCL12
  • Chemokines, CXC
  • Cxcl12 protein, mouse
  • Receptors, CXCR4
  • Receptors, Interleukin-2
Topics
  • Animals
  • Bone Marrow Cells (cytology)
  • Cell Movement
  • Cells, Cultured
  • Chemokine CXCL12
  • Chemokines, CXC (biosynthesis)
  • Dose-Response Relationship, Drug
  • Fetal Blood (immunology)
  • Flow Cytometry
  • Humans
  • Leukemia, T-Cell (pathology)
  • Mice
  • Mice, Inbred NOD
  • Mice, SCID
  • Neoplasm Transplantation
  • Precursor Cell Lymphoblastic Leukemia-Lymphoma (pathology)
  • Receptors, CXCR4 (biosynthesis)
  • Receptors, Interleukin-2 (metabolism)
  • Spleen (cytology)
  • Time Factors

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: