HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Enhanced nitric oxide inactivation in aortic coarctation-induced hypertension.

AbstractBACKGROUND:
Abdominal aortic coarctation above the renal arteries leads to severe hypertension (HTN) above the stenotic site. We have recently shown marked up-regulations of endothelial nitric oxide synthase (eNOS) in heart and thoracic aorta and of neuronal NOS (nNOS) in the brain of rats with severe aortic coarctation above the renal arteries. We hypothesize that the presence of severe regional HTN in the face of marked up-regulation of NO system may be partly due to enhanced NO inactivation by reactive oxygen species (ROS) leading to functional NO deficiency.
METHODS:
Tissue nitrotyrosine (which is the footprint of NO interaction with ROS) was determined by Western blot in sham-operated control and aortic-banded (above renal arteries) rats three weeks postoperatively. Intra-arterial pressure and tissue nitrotyrosine (Western blot) were measured.
RESULTS:
The banded group showed a marked rise in arterial pressure measured directly through a carotid cannula (203 +/- 9 vs. 131 +/- 2 mm Hg, P < 0.01). Compared with the sham-operated controls, the banded animals exhibited significant increases in nitrotyrosine abundance in the heart, brain, and the aorta segment above the stricture. In contrast, nitrotyrosine abundance was unchanged in the abdominal aorta segment below the stricture wherein blood pressure was not elevated.
CONCLUSION:
Coarctation-induced HTN is associated with increased nitrotyrosine abundance in all tissues exposed to high arterial pressure, denoting enhanced ROS-mediated inactivation and sequestration of NO in these sites. This can, in part, account for severe regional HTN in this model. The normality of nitrotyrosine abundance in the abdominal aorta wherein blood pressure is not elevated points to the role of baromechanical factors as opposed to circulating humoral factors that were necessarily similar in both segments.
AuthorsC H Barton, Z Ni, N D Vaziri
JournalKidney international (Kidney Int) Vol. 60 Issue 3 Pg. 1083-7 (Sep 2001) ISSN: 0085-2538 [Print] United States
PMID11532103 (Publication Type: Journal Article)
Chemical References
  • Nitric Oxide
  • 3-nitrotyrosine
  • Tyrosine
Topics
  • Animals
  • Aorta, Abdominal (metabolism)
  • Aorta, Thoracic (metabolism)
  • Aortic Coarctation (complications)
  • Baroreflex
  • Blotting, Western
  • Brain (metabolism)
  • Disease Models, Animal
  • Hypertension (etiology, metabolism)
  • Male
  • Myocardium (metabolism)
  • Nitric Oxide (metabolism)
  • Oxidative Stress
  • Rats
  • Rats, Sprague-Dawley
  • Tyrosine (analogs & derivatives, analysis)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: