HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

DNA vaccination against neu reduces breast cancer incidence and metastasis in mice.

Abstract
The gene for HER2/neu is overexpressed in 30-40% of breast and ovarian cancers, and this overexpression correlates with increased metastasis and poor prognosis. The HER2/neu gene product, a transmembrane protein kinase member of the EGF receptor family, has significant potential as a tumor antigen for vaccination. We inserted the sequence for neu into a novel plasmid called ELVIS containing a Sindbis virus replicon that reproduces multiple copies of mRNA. Mice vaccinated one time intramuscularly demonstrated a strong antibody response against A2L2, a murine breast cancer cell line transfected to express neu. Vaccinated mice challenged in the mammary fatpad with A2L2 had reduced tumor incidence and reduced tumor mass compared to mice challenged with tumor cells lacking the neu insert. Intradermal vaccination was also protective and required 80% less plasmid for a similar level of protection. Vaccination reduced the incidence of lung metastasis from mammary fatpad tumors and reduced the number of lung metastases resulting from intravenous injection of A2L2 cells. Cytotoxic T lymphocytes cultures of immune spleen cells with P815-neu cells produced high levels of interferon-gamma indicating an antigen-specific Th1-type immune response resulting from the vaccination. In a spontaneous breast tumor model using neu transgenic mice, vaccination with ELVIS-neu protected against development of spontaneous breast tumors. Our preclinical data indicate that therapeutic vaccination of patients with ELVIS-neu may reduce metastasis from HER2/neu-expressing breast and ovarian tumors.
AuthorsL B Lachman, X M Rao, R H Kremer, B Ozpolat, G Kiriakova, J E Price
JournalCancer gene therapy (Cancer Gene Ther) Vol. 8 Issue 4 Pg. 259-68 (Apr 2001) ISSN: 0929-1903 [Print] England
PMID11393278 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S., Research Support, U.S. Gov't, P.H.S.)
Chemical References
  • Vaccines, DNA
  • Interleukin-4
  • Interferon-gamma
  • Receptor, ErbB-2
Topics
  • Animals
  • Female
  • Flow Cytometry
  • Incidence
  • Interferon-gamma (metabolism)
  • Interleukin-4 (metabolism)
  • Lung Neoplasms (metabolism, prevention & control, secondary)
  • Mammary Neoplasms, Experimental (metabolism, pathology, prevention & control)
  • Mice
  • Mice, Inbred BALB C
  • Mice, Transgenic
  • Precipitin Tests
  • Receptor, ErbB-2 (genetics)
  • Spleen (immunology)
  • T-Lymphocytes, Cytotoxic (immunology)
  • Transfection
  • Vaccination
  • Vaccines, DNA (therapeutic use)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: