HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Laboratory diagnosis, epizootiology, and efficacy of marker vaccines in classical swine fever: a review.

Abstract
Detection of classical swine fever virus (CSFV) can be achieved by a range of assays of which the most commonly used are: immunohistochemical and virus culture techniques. New developments have enabled the detection of viral proteins by enzyme-linked immunosorbent assays (ELISAs) and the detection of the viral genome by RT- PCR. So far, laboratory findings show that the latter assays may supplement or replace the conventional techniques in the near future. The detection of serum antibody against structural and non-structural proteins of CSFV has been improved by developments in recombinant DNA techniques and has lead to a range of ELISAs. Although the characteristics of these ELISAs are excellent, positive results still need to be confirmed in the virus neutralization test. The available amount of sequence data enables diagnosticians to type strains of CSFV as different by comparing several parts of the genome. In some cases, this can provide conclusive evidence if a primary or secondary outbreak has been detected. Increased efforts focused on the retrieval of relevant data on the introduction of CSFV in a pig holding and the spread of CSFV in- and between pig holding(s) has generated more insight into the epizootiology of the disease. A successful control and eradication programme for classical swine fever (CSF) can consist of zoosanitary measures and/or vaccination. The latter can compromise the export of live pigs and pig products considerably unless marker vaccines have been used. Several studies were performed to determine the efficacy of an E2 subunit vaccine and live recombinant vaccine candidates. Firstly, we determined the 95% protective dose of an E2 subunit vaccine at 32 microg E2 per dosage after a single application. Further studies with a single administration of the subunit vaccine showed that: the vaccine was stable for a prolonged period after production, was able to reduce horizontal and vertical transmission of CSFV among vaccinated pigs, and provided protection for at least 6 months. An E(rns) antibody discriminatory assay was developed for use in combination with the subunit vaccine. Evaluation of the E(rns) ELISA showed that the sensitivity of the assay was lower than but that the specificity was equal to that of existing antibody assays. Two live recombinant marker vaccines were evaluated for the induction of clinical protection and reduction of transmission of CSFV shortly after vaccination. Results showed that these vaccines provided good clinical protection 1 week after a single vaccination. Research has shown that marker vaccines can be used in the future to support the control and eradication of CSFV.
AuthorsA J de Smit
JournalThe veterinary quarterly (Vet Q) Vol. 22 Issue 4 Pg. 182-8 (Oct 2000) ISSN: 0165-2176 [Print] England
PMID11087126 (Publication Type: Journal Article, Review)
Chemical References
  • Antibodies, Viral
  • RNA, Viral
  • Vaccines, Marker
  • Vaccines, Subunit
  • Vaccines, Synthetic
  • Viral Envelope Proteins
  • Viral Vaccines
Topics
  • Animals
  • Antibodies, Viral (analysis)
  • Classical Swine Fever (diagnosis, epidemiology, prevention & control)
  • Classical Swine Fever Virus (immunology, isolation & purification)
  • Disease Outbreaks (prevention & control, veterinary)
  • Enzyme-Linked Immunosorbent Assay
  • Europe (epidemiology)
  • Guidelines as Topic
  • Molecular Sequence Data
  • RNA, Viral (analysis)
  • Reverse Transcriptase Polymerase Chain Reaction
  • Sanitation
  • Swine
  • Vaccination (veterinary)
  • Vaccines, Marker (standards)
  • Vaccines, Subunit (standards)
  • Vaccines, Synthetic (standards)
  • Viral Envelope Proteins (genetics, immunology)
  • Viral Vaccines (standards)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: