HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Kinetics and mechanism of the reaction of aminoguanidine with the alpha-oxoaldehydes glyoxal, methylglyoxal, and 3-deoxyglucosone under physiological conditions.

Abstract
Aminoguanidine (AG), a prototype agent for the preventive therapy of diabetic complications, reacts with the physiological alpha-oxoaldehydes glyoxal, methylglyoxal, and 3-deoxyglucosone (3-DG) to form 3-amino-1,2,4-triazine derivatives (T) and prevent glycation by these agents in vitro and in vivo. The reaction kinetics of these alpha-oxoaldehydes with AG under physiological conditions pH 7.4 and 37 degrees was investigated. The rate of reaction of AG with glyoxal was first order with respect to both reactants; the rate constant k(AG,G) was 0.892 +/- 0.037 M(-1) sec(-1). The kinetics of the reaction of AG with 3-DG were more complex: the rate equation was d[T](o)/dt (initial rate of T formation) = [3-DG](k(AG,3-DG)[AG] + k(3-DG)), where k(AG,3-DG) = (3. 23 +/- 0.25) x 10(-3) M(-1) sec(-1) and k(3-DG) = (1.73 +/- 0.08) x 10(-5) sec(-1). The kinetics of the reaction of AG with methylglyoxal were consistent with the reaction of both unhydrated (MG) and monohydrate (MG-H(2)O) forms. The rate equation was d[T](o)/dt = ¿k(1)k(AG,MG)/(k(-1) + k(AG,MG)[AG]) + k(AG, MG-H(2)O)¿[MG-H(2)O][AG], where the rate constant for the reaction of AG with MG, k(AG,MG), was 178 +/- 15 M(-1) sec(-1) and for the reaction of AG with MG-H(2)O, k(AG,MG-H(2)O), was 0.102 +/- 0.001 M(-1) sec(-1); k(1) and k(-1) are the forward and reverse rate constants for methylglyoxal dehydration MG-H(2)O right harpoon over left harpoon MG. The kinetics of these reactions were not influenced by ionic strength, but the reaction of AG with glyoxal and with methylglyoxal under MG-H(2)O dehydration rate-limited conditions increased with increasing phosphate buffer concentration. Kinetic modelling indicated that the rapid reaction of AG with the MG perturbed the MG/MG-H(2)O equilibrium, and the ratio of the isomeric triazine products varied with initial reactant concentration. AG is kinetically competent to scavenge the alpha-oxoaldehydes studied and decrease related advanced glycated endproduct (AGE) formation in vivo. This effect is limited, however, by the rapid renal elimination of AG. Decreased AGE formation is implicated in the prevention of microvascular complications of diabetes by AG.
AuthorsP J Thornalley, A Yurek-George, O K Argirov
JournalBiochemical pharmacology (Biochem Pharmacol) Vol. 60 Issue 1 Pg. 55-65 (Jul 01 2000) ISSN: 0006-2952 [Print] England
PMID10807945 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Enzyme Inhibitors
  • Guanidines
  • Triazines
  • Glyoxal
  • Pyruvaldehyde
  • Deoxyglucose
  • 3-deoxyglucosone
  • pimagedine
Topics
  • Deoxyglucose (analogs & derivatives, chemistry)
  • Enzyme Inhibitors (chemistry)
  • Glyoxal (chemistry)
  • Guanidines (chemistry)
  • Kinetics
  • Pyruvaldehyde (chemistry)
  • Spectrophotometry (methods)
  • Triazines (chemistry)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: