HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Enhancement of radiation effects in vitro by the estrogen metabolite 2-methoxyestradiol.

Abstract
2-Methoxyestradiol. 2-Methoxyestradiol (2-ME) is an endogenous estradiol metabolite that disrupts microtubule function, suppresses murine tumors, and inhibits angiogenesis. Since some microtubule inhibitors have been shown to alter radiosensitivity, we have evaluated 2-ME as a radiation enhancer in vitro. H460 human lung cancer cells were plated, treated with 2-ME for 24 h, and irradiated; then colony-forming ability was assessed. The radiation dose enhancement ratios (DERs) using this protocol were 1.3, 1.8 and 2.1 for 1, 1.5 and 2 microM 2-ME, respectively. Using a single-cell plating protocol, the respective DERs were 1.2, 1.5 and 1.8. The parent compound of 2-ME, beta-estradiol, did not enhance radiation effects at equally cytotoxic doses. Isobologram analysis showed that 1 microM 2-ME was additive with radiation, but that 1.5 and 2 microM were synergistic. Cell cycle analysis showed a dose-dependent increase in the percentage of cells in the radiosensitive G(2)/M phase after a 24-h treatment with 2-ME; a threefold increase in the percentage of cells in G(2)/M phase was observed using 2 microM 2-ME. Treatment with 2 microM 2-ME almost completely inhibited repair of sublethal damage (SLD) as shown using split-dose recovery. Radiosensitive, repair-deficient murine SCID (severe combined immunodeficient) cells did not show enhancement of radiation effects with 2 microM 2-ME, but enhancement was observed in the wild-type parental cells (CB-17). SCID cells complemented with human DNA-dependent protein kinase restored radioenhancement by 2-ME. In addition, MCF-7 breast cancer cells were also radiosensitized by 2 microM 2-ME (DER = 2.1). These data suggest that 2-ME is a potential radiation sensitizer, in addition to its previously reported antitumor and antiangiogenic properties. We have verified the antiangiogenic activity of 2-ME in vitro using human endothelial cells. Based on these results, we hypothesize that the mechanism of radiation enhancement may involve redistribution of cells into G(2)/M phase by 2-ME, and that the resulting population of cells is repair-deficient and thus radiosensitive.
AuthorsG P Amorino, M L Freeman, H Choy
JournalRadiation research (Radiat Res) Vol. 153 Issue 4 Pg. 384-91 (Apr 2000) ISSN: 0033-7587 [Print] United States
PMID10760997 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Radiation-Sensitizing Agents
  • Estradiol
  • 2-Methoxyestradiol
Topics
  • 2-Methoxyestradiol
  • Animals
  • Cell Survival (drug effects, radiation effects)
  • Cells, Cultured
  • Estradiol (analogs & derivatives, pharmacology)
  • G2 Phase (radiation effects)
  • Humans
  • Mice
  • Mice, SCID
  • Mitosis (radiation effects)
  • Radiation Dosage
  • Radiation-Sensitizing Agents (pharmacology)
  • Tumor Cells, Cultured

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: