HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

The in vitro evaluation of 25-hydroxyvitamin D3 and 19-nor-1alpha,25-dihydroxyvitamin D2 as therapeutic agents for prostate cancer.

Abstract
Prostate cancer cells contain specific receptors [vitamin D receptors (VDRs)] for 1alpha,25-dihydroxyvitamin D3 (1alpha,25(OH)2D3), which is known to inhibit the proliferation and invasiveness of these cells. These findings support the use of 1alpha,25(OH)2D3 for prostate cancer therapy. However, because 1alpha,25(OH)2D3 can cause hypercalcemia, analogues of 1alpha,25(OH)2D3 that are less calcemic but that exhibit potent antiproliferative activity would be attractive as therapeutic agents. We investigated the effects of two different types of less calcemic vitamin D compounds, 25-hydroxyvitamin D3 [25(OH)D3] and 19-nor-1alpha,25-dihydroxyvitamin D2 [19-nor-1,25(OH)2D2], and compared their activity to 1alpha,25(OH)2D3 on (a) the proliferation of primary cultures and cell lines of human prostate cancer cells; and (b) the transactivation of the VDRs in the androgen-insensitive PC-3 cancer cell line stably transfected with VDR (PC-3/ VDR). 19-nor-1alpha,25(OH)2D2, an analogue of 1alpha,25(OH)2D3 that was originally developed for the treatment of parathyroid disease, has been shown to be less calcemic than 1alpha,25(OH)2D3 in clinical trials. Additionally, we recently showed that human prostate cells in primary culture possess 25(OH)D3-1alpha-hydroxylase, an enzyme that hydroxylates the inactive prohormone, 25(OH)D3, to the active hormone, 1alpha,25(OH)2D3, intracellularly. We reasoned that the hormone that is formed intracellularly would inhibit prostate cell proliferation in an autocrine fashion. We found that 1alpha,25(OH)2D3 and 19-nor-1alpha,25(OH)2D2 caused similar dose-dependent inhibition in the cell lines and primary cultures in the [3H]thymidine incorporation assay and that both compounds were significantly more active in the primary cultures than in LNCaP cells. Likewise, 25(OH)D3 had inhibitory effects comparable to those of 1alpha,25(OH)2D3 in the primary cultures. In the chloramphenicol acetyltransferase (CAT) reporter gene transactivation assay in PC-3/ VDR cells, 1alpha,25(OH)2D3 and 19-nor-1alpha,25(OH)2D2 caused similar increases in CAT activity between 10(-11)and 10(-9) M. Incubation of PC-3/VDR cells with 5 x 10(-8) M 25(OH)D3 induced a 29-fold increase in CAT activity, similar to that induced by 10(-8) M 1alpha,25(OH)2D3. In conclusion, our data indicate that 25(OH)D3 and 19-nor-1alpha,25(OH)2D2 represent two different solutions to the problem of hypercalcemia associated with vitamin D-based therapies: 25(OH)D3 requires the presence of 1alpha-hydroxylase, whereas 19-nor-1alpha,25(OH)2D2 does not. Both drugs are approved for human use and may be good candidates for human clinical trials in prostate cancer.
AuthorsT C Chen, G G Schwartz, K L Burnstein, B L Lokeshwar, M F Holick
JournalClinical cancer research : an official journal of the American Association for Cancer Research (Clin Cancer Res) Vol. 6 Issue 3 Pg. 901-8 (Mar 2000) ISSN: 1078-0432 [Print] United States
PMID10741714 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S., Research Support, U.S. Gov't, P.H.S.)
Chemical References
  • Ergocalciferols
  • Receptors, Calcitriol
  • Recombinant Fusion Proteins
  • Tritium
  • paricalcitol
  • Chloramphenicol O-Acetyltransferase
  • Calcifediol
  • Thymidine
Topics
  • Calcifediol (pharmacology)
  • Cell Count (drug effects)
  • Cell Division (drug effects)
  • Chloramphenicol O-Acetyltransferase (genetics, metabolism)
  • Dose-Response Relationship, Drug
  • Ergocalciferols (pharmacology)
  • Humans
  • Male
  • Prostatic Neoplasms (drug therapy, pathology)
  • Receptors, Calcitriol (genetics)
  • Recombinant Fusion Proteins (drug effects, genetics, metabolism)
  • Thymidine (metabolism)
  • Transcriptional Activation (drug effects)
  • Tritium
  • Tumor Cells, Cultured

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: