HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Osteogenic growth peptide normally stimulated by blood loss and marrow ablation has local and systemic effects on fracture healing in rats.

Abstract
Osteogenic growth peptide, a histone H4-related, 14-amino-acid peptide, is an active mediator of local, as well as systemic, osteogenic activity in response to marrow ablation, trauma, and blood loss. In this study, the effect of exogenous osteogenic growth peptide on the healing of femoral fractures in rats was investigated. A fracture at the midshaft of the femur was created in 50 rats. Half of the rats were injected subcutaneously with 25 ng of osteogenic growth peptide per rat per day for the first 7 days after fracture. Radiographs were taken each week, and the diameter of the callus was measured. The femurs of four animals from each group were harvested 1, 2, 3, and 4 weeks after fracture. Two femurs from each group were sectioned for histologic examination, and two were sectioned for measurement of density and mineral content. Marrow was aspirated from the contralateral femurs to establish adhering cell cultures, which were examined for osteogenicity. At 2 weeks, a large increase in mitogenicity and osteogenicity was seen in the marrow-derived cultures from the rats treated with osteogenic growth peptide; this increase was sustained through 4 weeks. Extraction of RNA from the contralateral marrow (systemic expression) and callus (local expression) for amplification with reverse transcription-polymerase chain reaction revealed greater systemic expression of transforming growth factors beta1, beta2, and beta3, fibroblast growth factor-2, insulin-like growth factor-1, and aggrecan throughout the 4 weeks after fracture, whereas types IIA and IIB collagen, link protein, and fibroblast growth factor receptor-3 had a greater local expression. The specimens treated with osteogenic growth peptide had a stronger expression of transforming growth factor-beta1, both locally and systemically. The average diameter of the callus was greater for the treated rats at all time intervals, and peak diameters were 7.58 mm at 3 weeks for the treated rats and 6.64 mm at 2 weeks and 6.63 mm at 3 weeks for the controls. Histological study revealed an earlier organization and faster healing of the treated fractures, as evidenced by the larger, earlier appearance of cartilaginous soft callus and the more rapid organization of bridging trabecular bone. No statistical significance was obtained when these comparisons were made between the groups. These results suggest that osteogenic growth peptide can be used to promote earlier proliferation and differentiation of osteogenic cells in marrow and bone-repair callus, possibly through its effect on the transforming growth factor-beta family.
AuthorsM A Brager, M J Patterson, J F Connolly, Z Nevo
JournalJournal of orthopaedic research : official publication of the Orthopaedic Research Society (J Orthop Res) Vol. 18 Issue 1 Pg. 133-9 (Jan 2000) ISSN: 0736-0266 [Print] United States
PMID10716289 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Growth Substances
  • Histones
  • Intercellular Signaling Peptides and Proteins
  • Peptides
  • RNA, Messenger
  • osteogenic growth peptide
Topics
  • Animals
  • Bone Density
  • Bone Marrow (physiopathology)
  • Cell Differentiation (drug effects)
  • Cell Division (drug effects)
  • Fracture Healing (drug effects)
  • Growth Substances (genetics, pharmacology, physiology)
  • Hemorrhage (physiopathology)
  • Histones
  • Intercellular Signaling Peptides and Proteins
  • Peptides (pharmacology)
  • RNA, Messenger (analysis)
  • Rats
  • Rats, Sprague-Dawley

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: