HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Substituent effects on the antibacterial activity of nitrogen-carbon-linked (azolylphenyl)oxazolidinones with expanded activity against the fastidious gram-negative organisms Haemophilus influenzae and Moraxella catarrhalis.

Abstract
A series of new nitrogen-carbon-linked (azolylphenyl)oxazolidinone antibacterial agents has been prepared in an effort to expand the spectrum of activity of this class of antibiotics to include Gram-negative organisms. Pyrrole, pyrazole, imidazole, triazole, and tetrazole moieties have been used to replace the morpholine ring of linezolid (2). These changes resulted in the preparation of compounds with good activity against the fastidious Gram-negative organisms Haemophilus influenzae and Moraxella catarrhalis. The unsubstituted pyrrolyl analogue 3 and the 1H-1,2,3-triazolyl analogue 6 have MICs against H. influenzae = 4 microgram/mL and M. catarrhalis = 2 microgram/mL. Various substituents were also placed on the azole moieties in order to study their effects on antibacterial activity in vitro and in vivo. Interesting differences in activity were observed for many analogues that cannot be rationalized solely on the basis of sterics and position/number of nitrogen atoms in the azole ring. Differences in activity rely strongly on subtle changes in the electronic character of the overall azole systems. Aldehyde, aldoxime, and cyano azoles generally led to dramatic improvements in activity against both Gram-positive and Gram-negative bacteria relative to unsubstituted counterparts. However, amide, ester, amino, hydroxy, alkoxy, and alkyl substituents resulted in no improvement or a loss in antibacterial activity. The placement of a cyano moiety on the azole often generates analogues with interesting antibacterial activity in vitro and in vivo. In particular, the 3-cyanopyrrole, 4-cyanopyrazole, and 4-cyano-1H-1,2,3-triazole congeners 28, 50, and 90 had S. aureus MICs </= 0.5-1 microgram/mL and H. influenzae and M. catarrhalis MICs = 2-4 microgram/mL. These analogues are also very effective versus S. aureus and S. pneumoniae in mouse models of human infection with ED(50)s in the range of 1. 2-1.9 mg/kg versus 2.8-4.0 mg/kg for the eperezolid (1) control.
AuthorsM J Genin, D A Allwine, D J Anderson, M R Barbachyn, D E Emmert, S A Garmon, D R Graber, K C Grega, J B Hester, D K Hutchinson, J Morris, R J Reischer, C W Ford, G E Zurenko, J C Hamel, R D Schaadt, D Stapert, B H Yagi
JournalJournal of medicinal chemistry (J Med Chem) Vol. 43 Issue 5 Pg. 953-70 (Mar 09 2000) ISSN: 0022-2623 [Print] United States
PMID10715160 (Publication Type: Journal Article)
Chemical References
  • Anti-Bacterial Agents
  • Azoles
  • Oxazoles
Topics
  • Administration, Oral
  • Animals
  • Anti-Bacterial Agents (chemical synthesis, chemistry, pharmacology)
  • Azoles (chemical synthesis, chemistry, pharmacology)
  • Haemophilus influenzae (drug effects)
  • Humans
  • Methicillin Resistance
  • Mice
  • Microbial Sensitivity Tests
  • Moraxella catarrhalis (drug effects)
  • Oxazoles (chemical synthesis, chemistry, pharmacology)
  • Structure-Activity Relationship

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: