HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Plasma-deposited membranes for controlled release of antibiotic to prevent bacterial adhesion and biofilm formation.

Abstract
Bacterial infection on implanted medical devices is a significant clinical problem caused by the adhesion of bacteria to the biomaterial surface followed by biofilm formation and recruitment of other cells lines such as blood platelets, leading to potential thrombosis and thromboembolisms. To minimize biofilm formation and potential device-based infections, a polyurethane (Biospan) matrix was developed to release, in a controlled manner, an antibiotic (ciprofloxacin) locally at the implant interface. One material set consisted of the polyetherurethane (PEU) base matrix radiofrequency glow discharge plasma deposited with triethylene glycol dimethyl ether (triglyme); the other set had an additional coating of poly(butyl methyacrylate) (pBMA). Triglyme served as a nonfouling coating, whereas the pBMA served as a controlled porosity release membrane. The pBMA-coated PEU contained and released ciprofloxacin in a controlled manner. The efficacy of the modified PEU polymers against Pseudomonas aeruginosa suspensions was evaluated under flow conditions in a parallel plate flow cell. Bacterial adhesion and colonization, if any, to the test polymers were examined by direct microscopic image analysis and corroborated with destructive sampling, followed by direct cell counting. The rate of initial bacterial cell adhesion to triglyme-coated PEU was 0. 77%, and to the pBMA-coated PEU releasing ciprofloxacin was 6% of the observed adhesion rates for the control PEU. However, the rate of adherent cell accumulation due to cell growth and replication was approximately the same for the triglyme-coated PEU and the PEU controls, but was zero for the pBMA-coated PEU releasing ciprofloxacin.
AuthorsS K Hendricks, C Kwok, M Shen, T A Horbett, B D Ratner, J D Bryers
JournalJournal of biomedical materials research (J Biomed Mater Res) Vol. 50 Issue 2 Pg. 160-70 (May 2000) ISSN: 0021-9304 [Print] United States
PMID10679680 (Publication Type: Journal Article)
CopyrightCopyright 2000 John Wiley & Sons, Inc.
Chemical References
  • Anti-Bacterial Agents
  • Biocompatible Materials
  • Membranes, Artificial
Topics
  • Anti-Bacterial Agents (pharmacology)
  • Bacterial Adhesion (drug effects)
  • Biocompatible Materials
  • Biofilms (drug effects)
  • Equipment and Supplies (adverse effects, standards)
  • Membranes, Artificial
  • Plasma
  • Pseudomonas Infections (etiology, prevention & control)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: