HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Glycosylation of microtubule-associated protein tau in Alzheimer's disease brain.

Abstract
In the neurofibrillary pathology of Alzheimer's disease (AD), neurofibrillary tangles (NFTs) contain paired helical filaments (PHFs) as their major fibrous component. Abnormally hyperphosphorylated, microtubule-associated protein tau is the major protein subunit of PHFs. A recent in vitro study showed that PHF tangles from AD brains are highly glycosylated, whereas no glycan is detected in normal tau. Deglycosylation of PHF tangles converts them into bundles of straight filaments and restores their accessibility to microtubules. We showed that PHF tangles from AD brain tissue were associated with specific glycan molecules by double immunostaining with peroxidase and alkaline phosphatase labeling. Intracellular tangles and dystrophic neurites in a neuritic plaque with abnormally hyperphosphorylated tau, detected with the monoclonal antibodies AT-8 and anti-tau-2, were also positive with lectin Galanthus nivalis agglutinin (GNA) which recognizes both the N- and O-glycosidically linked saccharides. Colocalization was not seen in the extracellular tangles and amyloid deposition, suggesting that the glycosylation of tau might be associated with the early phase of insoluble NFT formation. Thus, although abnormal phosphorylation might promote aggregation of tau and inhibition of the assembly of microtubules, glycosylation mediated by a GNA-positive glycan appears to be responsible for the formation of the PHF structures in vivo.
AuthorsM Takahashi, Y Tsujioka, T Yamada, Y Tsuboi, H Okada, T Yamamoto, Z Liposits
JournalActa neuropathologica (Acta Neuropathol) Vol. 97 Issue 6 Pg. 635-41 (Jun 1999) ISSN: 0001-6322 [Print] Germany
PMID10378383 (Publication Type: Journal Article)
Chemical References
  • tau Proteins
Topics
  • Alzheimer Disease (immunology, metabolism)
  • Brain (immunology, metabolism)
  • Galanthus
  • Glycosylation
  • Humans
  • Immunohistochemistry
  • tau Proteins (immunology, metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: