Protection against hypoxia-reoxygenation in the absence of poly (ADP-ribose) synthetase in isolated working hearts.

Peroxynitrite and hydroxyl radical are reactive oxidants produced during myocardial reperfusion injury. They have been shown to induce dysfunction in cardiac myocytes, in part, via the activation of the nuclear enzyme poly (ADP-ribose) synthetase (PARS). These oxidants can trigger DNA single strand breakage, which triggers PARS activation, resulting in cellular NAD+ and ATP depletion and cytotoxicity. Recent work has demonstrated that hypoxia-reoxygenation of cardiac myocytes in vitro also causes peroxynitrite formation, PARS activation and cytotoxicity. In the present study, using hearts from genetically engineered mice lacking PARS, we have investigated whether the absence of PARS alters the functional response to hypoxia reoxygenation. Isolated work-performing mouse hearts were stabilized under the same loading condition (cardiac minute work of 250 mmHg x ml/min, an afterload of 50 mmHg aortic pressure and similar venous return of 5 ml/min, resulting in the same preload). After 30 min equilibration the hearts were subjected to 30 min hypoxia followed by 30 min of reoxygenation. At the end of the reoxygenation, in hearts from wild-type animals, there was a significant suppression in the rate of intraventricular pressure development (+dP/dt) from 3523 to 2907 mmHg. There was also a significant suppression in the rate of relaxation (-dP/dt) in the wild-type hearts from 3123 to 2168 mmHg. The time to peak pressure (TPP) increased from 0.48 to 0.59 ms/mmHg and the half-time of relaxation (RT1/2) increased from 0.59 to 0.74 ms/mmHg. In contrast, in the hearts from the PARS knockout animals, no significant suppression of +dP/dt (from 3654 to 3419 mmHg), and no significant increase in the TPP (from 0.462 to 0.448 ms/mmHg) were found, and the decrease in -dP/dt was partially ameliorated (from 3399 to 2687 mmHg) as well as the half-time of relaxation (from 0.507 to 0.55 ms/mmHg) when compared to the response to the wild-type hearts. The current data demonstrate that the reoxygenation induced suppression of the myocardial contractility is dependent on the functional integrity of PARS.
AuthorsI L Grupp, T M Jackson, P Hake, G Grupp, C Szabó
JournalJournal of molecular and cellular cardiology (J Mol Cell Cardiol) Vol. 31 Issue 1 Pg. 297-303 (Jan 1999) ISSN: 0022-2828 [Print] ENGLAND
PMID10072736 (Publication Type: Journal Article, Research Support, U.S. Gov't, P.H.S.)
Chemical References
  • Contractile Proteins
  • Poly(ADP-ribose) Polymerases
  • Animals
  • Anoxia (prevention & control, therapy)
  • Contractile Proteins
  • Heart (physiology)
  • Mice
  • Mice, Knockout
  • Myocardium (metabolism)
  • Poly(ADP-ribose) Polymerases (deficiency)
  • Reperfusion Injury (metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research network!

Choose Username:
Verify Password: